首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3073篇
  免费   730篇
  国内免费   415篇
测绘学   183篇
大气科学   151篇
地球物理   1009篇
地质学   1458篇
海洋学   477篇
天文学   7篇
综合类   215篇
自然地理   718篇
  2024年   3篇
  2023年   27篇
  2022年   79篇
  2021年   134篇
  2020年   150篇
  2019年   143篇
  2018年   127篇
  2017年   153篇
  2016年   155篇
  2015年   139篇
  2014年   187篇
  2013年   261篇
  2012年   178篇
  2011年   175篇
  2010年   160篇
  2009年   183篇
  2008年   195篇
  2007年   226篇
  2006年   220篇
  2005年   170篇
  2004年   186篇
  2003年   153篇
  2002年   134篇
  2001年   112篇
  2000年   85篇
  1999年   74篇
  1998年   76篇
  1997年   67篇
  1996年   37篇
  1995年   53篇
  1994年   48篇
  1993年   25篇
  1992年   18篇
  1991年   16篇
  1990年   20篇
  1989年   13篇
  1988年   12篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1982年   2篇
  1981年   1篇
排序方式: 共有4218条查询结果,搜索用时 46 毫秒
101.
YANG Rong 《地震地质》2017,39(6):1173-1184
With steady development of mathematical-physical models and computer technology, numerous methods of topographic simulation have emerged during the past decades. A major challenge in the modeling is how to accurately and efficiently describe processes of surface erosion at different spatial scales. This review focuses on the physical processes controlling surface erosion, including river erosion and hillslope erosion. Four popular models of topographic simulation (CASCADE, CHILD, FastScape and DAC models)and their applications are presented. Although these models have become more sophisticated in recent years, there are still some issues unsolved regarding the basics of the physical erosion processes. For example, some factors have not been taken into account, such as the impacts of changes in grain size and sediment budget during transportation on river erosion and the measurements of the rock erodibilities for various lithologies. Moreover, there is no topographic index that can be used to evaluate the modeling results. Therefore, it would be helpful to combine the models of topographic simulation with other numerical models, e.g. the low-temperature thermochronometric data modeling, to provide better constraints on the terrain modeling.  相似文献   
102.
Watershed delineation is a required step when conducting any spatially distributed hydrological modelling. Automated approaches are often proposed to delineate a watershed based on a river network extracted from the digital elevation model (DEM) using the deterministic eight‐neighbour (D8) method. However, a realistic river network cannot be derived from conventional DEM processing methods for a large flat area with a complex network of rivers, lakes, reservoirs, and polders, referred to as a plain river network region (PRNR). In this study, a new approach, which uses both hydrographic features and DEM, has been developed to address the problems of watershed delineation in PRNR. It extracts the river nodes and determines the flow directions of the river network based on a vector‐based hydrographic feature data model. The river network, lakes, reservoirs, and polders are then used to modify the flow directions of grid cells determined by D8 approach. The watershed is eventually delineated into four types of catchments including lakes, reservoirs, polders, and overland catchments based on the flow direction matrix and the location of river nodes. Multiple flow directions of grid cells are represented using a multi‐direction encoding method, and multiple outflows of catchments are also reflected in the topology of catchments. The proposed approach is applied to the western Taihu watershed in China. Comparisons between the results obtained from the D8 approach, the ‘stream burning’ approach, and those from the proposed approach clearly demonstrate an improvement of the new approach over the conventional approaches. This approach will benefit the development of distributed hydrological models in PRNR for the consideration of different types and multiple inlets and outlets of catchments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
103.
Daniel Caissie 《水文研究》2016,30(12):1872-1883
Stream temperature plays an important role in many biotic and abiotic processes, as it influences many physical, chemical and biological properties in rivers. As such, a good understanding of the thermal regime of rivers is essential for effective fisheries management and the protection aquatic habitats. Moreover, a thorough understanding of underlying physical processes and river heat fluxes is essential in the development of better and more adaptive water temperature models. Very few studies have measured river evaporation and condensation and subsequently calculated corresponding heat fluxes in small tributary streams, mainly because microclimate data (data collected within the stream environment) are essential and rarely available. As such, the present study will address these issues by measuring river evaporation and condensation in tributary 1 (Trib 1, a small tributary within Catamaran Brook) using floating minipans. The latent heat flux and other important fluxes were calculated. Results showed that evaporation was low within the small Trib 1 of Catamaran Brook, less than 0.07 mm day?1. Results showed that condensation played an important role in the latent heat flux. In fact, condensation was present during 34 of 92 days (37%) during the summer, which occurred when air temperature was greater than water temperature by 4–6 °C. Heat fluxes within this small stream showed that solar radiation dominated the heat gains and long‐wave radiation dominated the heat losses. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2015 John Wiley & Sons, Ltd.  相似文献   
104.
Fine sediment is a dynamic component of the fluvial system, contributing to the physical form, chemistry and ecological health of a river. It is important to understand rates and patterns of sediment delivery, transport and deposition. Sediment fingerprinting is a means of directly determining sediment sources via their geochemical properties, but it faces challenges in discriminating sources within larger catchments. In this research, sediment fingerprinting was applied to major river confluences in the Manawatu catchment as a broad‐scale application to characterizing sub‐catchment sediment contributions for a sedimentary catchment dominated by agriculture. Stepwise discriminant function analysis and principal component analysis of bulk geochemical concentrations and geochemical indicators were used to investigate sub‐catchment geochemical signatures. Each confluence displayed a unique array of geochemical variables suited for discrimination. Geochemical variation in upstream sediment samples was likely a result of the varying geological source compositions. The Tiraumea sub‐catchment provided the dominant signature at the major confluence with the Upper Manawatu and Mangatainoka sub‐catchments. Subsequent downstream confluences are dominated by the upstream geochemical signatures from the main stem of Manawatu River. Variability in the downstream geochemical signature is likely due to incomplete mixing caused in part by channel configuration. Results from this exploratory investigation indicate that numerous geochemical elements have the ability to differentiate fine sediment sources using a broad‐scale confluence‐based approach and suggest there is enough geochemical variation throughout a large sedimentary catchment for a full sediment fingerprint model. Combining powerful statistical procedures with other geochemical analyses is critical to understanding the processes or spatial patterns responsible for sediment signature variation within this type of catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
105.
Gravel road surfaces can be a major source of fine sediment to streams, yet their contribution to channel reach sediment balances remains poorly documented. To quantify the input of road surface material and to compare this input with natural sediment sources at the reach scale, suspended sediment dynamics was examined and a 16‐month sediment balance was developed for a ~35 channel‐width (approx. 425 m) reach of the Honna River, a medium‐size, road‐affected stream located in coastal British Columbia. Of the 105 ± 33 t of suspended material passing through the reach, 18 ± 6% was attributed to the road surface. The high availability of sediment on the road surface appears to limit hysteresis in road run‐off. During rainstorms that increase streamflow, road surface material composed 0.5–15% of sediment inputs during relatively dry conditions from April to the end of September and 5–70% through wetter conditions from October to the end of March, but our data do not show evidence of major sediment accumulation on the riverbed in the reach. A comparison of modelled sediment production on the road surface with observed yields from drainage channels suggests that (1) during low intensity rainfall, ditches and drainage channels may trap sediment from road run‐off, which is subsequently released during events of greater intensity, and/or (2) production models do not effectively describe processes, such as deposition or erosion of sediment in ditches, which control sediment transport and delivery. Our findings further emphasize the risk of unpaved roads in polluting river systems and highlight the continued need for careful road design and location away from sensitive aquatic environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
106.
A long‐term study of O, H and C stable isotopes has been undertaken on river waters across the 7000‐km2 upper Thames lowland river basin in the southern UK. During the period, flow conditions ranged from drought to flood. A 10‐year monthly record (2003–2012) of the main River Thames showed a maximum variation of 3‰ (δ18O) and 20‰ (δ2H), although interannual average values varied little around a mean of –6.5‰ (δ18O) and –44‰ (δ2H). A δ2H/δ18O slope of 5.3 suggested a degree of evaporative enrichment, consistent with derivation from local rainfall with a weighted mean of –7.2‰ (δ18O) and –48‰ (δ2H) for the period. A tendency towards isotopic depletion of the river with increasing flow rate was noted, but at very high flows (>100 m3/s), a reversion to the mean was interpreted as the displacement of bank storage by rising groundwater levels (corroborated by measurements of specific electrical conductivity). A shorter quarterly study (October 2011–April 2013) of isotope variations in 15 tributaries with varying geology revealed different responses to evaporation, with a well‐correlated inverse relationship between Δ18O and baseflow index for most of the rivers. A comparison with aquifer waters in the basin showed that even at low flow, rivers rarely consist solely of isotopically unmodified groundwater. Long‐term monitoring (2003–2007) of carbon stable isotopes in dissolved inorganic carbon (DIC) in the Thames revealed a complex interplay between respiration, photosynthesis and evasion, but with a mean interannual δ13C‐DIC value of –14.8 ± 0.5‰, exchange with atmospheric carbon could be ruled out. Quarterly monitoring of the tributaries (October 2011–April 2013) indicated that in addition to the aforementioned factors, river flow variations and catchment characteristics were likely to affect δ13C‐DIC. Comparison with basin groundwaters of different alkalinity and δ13C‐DIC values showed that the origin of river baseflow is usually obscured. The findings show that long‐term monitoring of environmental tracers can help to improve the understanding of how lowland river catchments function. Copyright © NERC 2015. Hydrological Processes © 2015 John Wiley & Sons, Ltd.  相似文献   
107.
The topography and geomorphology of active orogens result from the interaction of tectonics and climate. In most orogens, a fluvial channel is most sensitive to the coupling between tectonics, lithology, and climate. Meanwhile, the related signals have been recorded by both the drainage geometry and channel longitudinal profile. Thus, how to extract tectonic information from fluvial channels has been a focused issue in geologic and geomorphologic studies. The well known stream-power river incision model bridges the gap between tectonic uplift, river incision and channel profile change, making it possible to retrieve rock uplift pattern from river profiles. In this model, the river incision rate depends on the rock erodibility, contributing drainage area and river gradient. The steady-state form of the river incision model predicts a power-law scaling between the drainage area and channel gradient. Via a linear regression to the log-transformed slope-area data, the slope and intercept are channel concavity and steepness indices, respectively. The concavity relates to lithology, climatic setting and incision process while the channel steepness can be used to map the spatial pattern of rock uplift. For its simple calculation process, the slope-area analysis has been widely used in the study of tectonic geomorphology during past decades. However, to calculate river slope, the coarse channel elevation data must be smoothed, re-sampled, and differentiated without any reasonable smooth window or rigid mathematical fundamentals. One may lose important information and derive stream-power parameters with high uncertainties. In this paper, we introduce the integral approach, a procedure that has been widely used in the latest four years and demonstrated to be a better method for river profile analysis than the traditional slope-area analysis. Via the integration to the steady-state form of the stream-power river incision equation, the river longitudinal profile can be converted into a straight line of which the independent variable is the integral quantity χ with the unit of distance and the dependent variable is the relative channel elevation. We can calculate the linear correlation coefficient between elevation and χ based on a series of concavity values and find the best linear fit to be the reasonable channel concavity index. The slope of the linear fit to the χ value and elevation is simply related to the ratio of the uplift rate to the erodibility. Without calculating channel slope, the integral approach makes up for the drawback of the slope-area analysis. Meanwhile, via the integral approach, a steady-state river profile can be expressed as a continuous function, which can provide theoretical principle for some geomorphic parameters (e.g., slope-length index, hypsometric integral). In addition, we can determine the drainage network migration direction using this method. Therefore, the integral approach can be used as a better method for tectonogeomorphic research.  相似文献   
108.
Habitat fragmentation in channel networks and riverine ecosystems is increasing globally due to the construction of barriers and river regulation. The resulting divergence from the natural state poses a threat to ecosystem integrity. Consequently, a trade‐off is required between the conservation of biodiversity in channel networks and socio‐economic factors including power generation, potable water supplies, fisheries, and tourism. Many of Scotland's rivers are regulated for hydropower generation but also support populations of Atlantic salmon (Salmo salar L.) that have high economic and conservation value. This paper investigates the use of connectivity metrics and weightings to assess the impact of river barriers (impoundments) associated with hydropower regulation on natural longitudinal channel connectivity for Atlantic salmon. We applied 2 different weighting approaches in the connectivity models that accounted for spatial variability in habitat quality for spawning and fry production and contrasted these models with a more traditional approach using wetted area. Assessments of habitat loss using the habitat quality weighted models contrasted with those using the less biologically relevant wetted area. This highlights the importance of including relevant ecological and hydrogeomorphic information in assessing regulation impacts on natural channel connectivity. Specifically, we highlight scenarios where losing a smaller area of productive habitat can have a larger impact on Atlantic salmon than losing a greater area of less suitable habitat. It is recommended that future channel connectivity assessments should attempt to include biologically relevant weightings, rather than relying on simpler metrics like wetted area which can produce misleading assessments of barrier impacts.  相似文献   
109.
The depositional stratigraphy of within‐channel deposits in sandy braided rivers is dominated by a variety of barforms (both singular ‘unit’ bars and complex ‘compound’ bars), as well as the infill of individual channels (herein termed ‘channel fills’). The deposits of bars and channel fills define the key components of facies models for braided rivers and their within‐channel heterogeneity, knowledge of which is important for reservoir characterization. However, few studies have sought to address the question of whether the deposits of bars and channel fills can be readily differentiated from each other. This paper presents the first quantitative study to achieve this aim, using aerial images of an evolving modern sandy braided river and geophysical imaging of its subsurface deposits. Aerial photographs taken between 2000 and 2004 document the abandonment and fill of a 1·3 km long, 80 m wide anabranch channel in the sandy braided South Saskatchewan River, Canada. Upstream river regulation traps the majority of very fine sediment and there is little clay (< 1%) in the bed sediments. Channel abandonment was initiated by a series of unit bars that stalled and progressively blocked the anabranch entrance, together with dune deposition and stacking at the anabranch entrance and exit. Complete channel abandonment and subsequent fill of up to 3 m of sediment took approximately two years. Thirteen kilometres of ground‐penetrating radar surveys, coupled with 18 cores, were obtained over the channel fill and an adjacent 750 m long, 400 m wide, compound bar, enabling a quantitative analysis of the channel and bar deposits. Results show that, in terms of grain‐size trends, facies proportions and scale of deposits, there are only subtle differences between the channel fill and bar deposits which, therefore, renders them indistinguishable. Thus, it may be inappropriate to assign different geometric and sedimentological attributes to channel fill and bar facies in object‐based models of sandy braided river alluvial architecture.  相似文献   
110.
赵勇伟  樊祺诚 《岩石学报》2011,27(10):2833-2841
大兴安岭哈拉哈河-绰尔河第四纪火山岩中含有尖晶石相和石榴石相橄榄岩捕虏体.本文报道的尖晶石相橄榄岩包括方辉橄榄岩和二辉橄榄岩两类,前者分布数量略高于后者.方辉橄榄岩多数具有较高的平衡温度(1072~1193℃),矿物化学成分变化大,含有高Mg橄榄石和高Cr#尖晶石,这些特征一致表明是古老岩石圈地幔残余的样品.而二辉橄榄岩显示相对均一的矿物化学成分和很宽的平衡温度变化范围(636~1178℃),代表了明显受到改造的岩石圈地幔,可能反映岩石圈地幔的不同深度和局部经历了软流圈与岩石圈相互作用.通过与华北克拉通的对比,发现地处兴蒙造山带的大兴安岭岩石圈地幔中仍保留有相当量的古老岩石圈地幔残余,区别于遭受强烈改造和破坏的华北克拉通东部地区的岩石圈地幔.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号